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Abstract

We introduce a mesoscale method for simulating hydrodynamic transport and self-assembly of inhomogeneous poly-
mer melts in pressure driven and drag induced flows. This method extends dynamic self-consistent field theory (DSCFT)
into the hydrodynamic regime where bulk material transport and viscoelastic effects play a significant role. The method
combines four distinct components as a single coupled system, including (1) non-equilibrium self-consistent field theory
describing block copolymer self-assembly, (2) multi-fluid Navier–Stokes type hydrodynamics for tracking material trans-
port, (3) constitutive equations modeling viscoelastic phase separation, and (4) rigid wall fields which represent moving
channel boundaries, machine components, and nano-particulate fillers. We also present an efficient, pseudo-spectral imple-
mentation for this set of coupled equations which enables practical application of the model in periodic domains. We val-
idate the model by reproducing well known phenomena including equilibrium diblock meso-phases, analytic Stokes flows,
and viscoelastic phase separation of glassy/elastic polymer melts. We also demonstrate the stability and accuracy of the
numerical implementation by examining its convergence under grid-size refinement.
Published by Elsevier Inc.
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1. Introduction

Many important products are composed of inhomogeneous polymeric fluids which are processed in molten
form and subjected to industrial techniques such as melt injection, blow molding, spin casting, and fiber draw-
ing. The physical properties of these products are often dictated by the detailed distribution of their constit-
uent components, which in turn is determined by the manner in which they were processed. Improving the
final product may be achieved by improving the process, and computational tools can provide a convenient
and cost effective alternative to trial-and-error refinement. At the minimum, such a numerical tool must be
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capable of simulating phase separation, polymer viscoelasticity, boundary surface wetting, the effects of con-
taminants, and the manner in which hydrodynamic transport influences these phenomena.

In this paper, we propose a method for simulating the transport of inhomogeneous polymeric fluids, as well
as an efficient pseudo-spectral implementation. The method combines a non-equilibrium version of self-con-
sistent field theory (SCFT), a Navier–Stokes type hydrodynamic model, and a set of viscoelastic constitutive
equations, into a single, coupled set of nonlinear differential equations. It also employs a set of continuous,
rigid wall fields, which may be moving, to simulate pressure driven flows, drag induced flows, and bound-
ary-wetting conditions. Subsequently, we refer to the method as hydrodynamic self-consistent field theory
(HSCFT) in order to underscore its emphasis on the hydrodynamic transport of polymeric fluids. A schematic
diagram illustrating the interaction of each component is presented in Fig. 1.

In contrast to ‘‘phase field’’ techniques [1–3] which employ a Ginzburg–Landau free energy, this method is
capable of simulating the assembly of multiblock copolymer meso-phases where the polymeric nature of the
chains is explicitly taken into account. It also differs from traditional SCFT and DSCFT methods which are
incapable of simulating the effects of hydrodynamic transport in pressure driven and drag induced flows. Gen-
erally speaking, SCFT [4–6] describes equilibrium morphologies and meso-phases boundaries, DSCFT [7–12]
models describe non-equilibrium systems in which hydrodynamic transport may be neglected including phase
separating melts and systems subjected to simple shear fields, and HSCFT is appropriate for the description of
non-equilibrium systems in which hydrodynamic effects play an important role.

In Section 2, we present the governing equations for each component of the model. In Section 3, we convert
these equations to a dimensionless form, and in Section 4, we present a pseudo-spectral numerical method
suitable for practical implementation of the method on a computer. We validate the method in Section 5
by reproducing the results of established numerical techniques and demonstrating qualitative agreement with
experiment and verify the stability and convergence of the numerical implementation under grid-size refine-
ment. We summarize our results in Section 6. For completeness, we also present derivations of the SCFT ther-
modynamic model in Appendix A and the multi-fluid hydrodynamic model in Appendix B.

2. Governing equations

2.1. Polymer thermodynamics

The micro-physical, material specific properties of the system are modeled by a non-equilibrium version of
SCFT. Self-consistent field theory is a mean field, mesoscale technique ideal for simulating the thermodynamic
properties of entangled polymers,which is capable of simulating phase separation of incompatible species,
polymer–wall interactions, and the effects of polymer polydispersity. Following the formal procedure dis-
cussed in Appendix A, we obtain the free energy of a blend of C distinct copolymer chains in the canonical
ensemble, which takes the form
Chemical Potential Gradients
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Fig. 1. Overview of the HSCFT scheme. The thermodynamic model tracks the micro-physical behavior of the polymers, producing
imbalanced chemical potential fields which, together with moving walls and external body forces, induce bulk hydrodynamic motion. The
multi-fluid model iterates to satisfy the no flow, no slip, constant density, and force balance conditions, and the resultant pressure and
velocity fields are used to transport the volume fractions.
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F ¼ U// þ U/w � TS; ð1Þ

where the enthalpic components of the free energy are
U// ¼
kT
2v0

Z
dr0
XM

i¼1

XM

j¼1

/iðr0Þvij/jðr0Þ; ð2Þ

U/w ¼
kT
v0

Z
dr0
XM

i¼1

XW

j¼1

/iðr0Þnijwjðr0Þ: ð3Þ
The U// term represents the energy associated with all two body monomer–monomer interactions, where /i(r)
is the volume fraction of monomers of type i at point r. The sum runs over all M distinct monomer species.
Note that for our purposes we consider two species of the same monomer type to be distinct if they belong to
different copolymers, as the two types will exhibit different dynamic behavior. The Flory incompatibility
parameter, vij, sets the strength of the effective repulsion between them, which is positive for immiscible poly-
mers. Similarly, the U/w term represents the net energy of all monomer–wall interactions, where wj(r) repre-
sents the local volume fraction of solid material of type j out of W possible ‘‘wall’’ materials.

The free energy also contains the term
�S=k ¼ �
XC

a¼1

na ln Qa½fxg� �
1

v0

Z
dr0
XM

i¼1

xiðr0Þ/iðr0Þ; ð4Þ
which describes the net entropy arising from all copolymers in the system. Each term Qa represents a partition
function over all possible configurations of a given copolymer a when subjected to the externally applied fields
xi(r) where i runs over all distinct monomers species and the second term ‘‘subtracts off’’ the effects of the
external field. Note that the copolymer index a is a function of monomer index i. For example, in a blend con-
taining two triblock copolymer species, a = 1 for i 2 {1,2,3} and a = 2 for i 2 {4,5,6}.

The manner in which the copolymers chains are stretched and arranged in a mean-field sense may be deter-
mined by solving two Feynman–Kac style diffusion equations over the polymerization index s for each copoly-
mer a,
osqaðr; sÞ ¼ R2
gar2qaðr; sÞ � N aXaðr; sÞqaðr; sÞ; ð5Þ

osqyaðr; sÞ ¼ R2
gar2qyaðr; sÞ þ N aXaðr; sÞqyaðr; sÞ: ð6Þ
The function q(r, s) is called the propagator and q�(r, s) is the co-propagator, where q(r, s) q�(r, s)/Q represents
the probability of finding segment s at the point r given the initial conditions q(r,0) = 1 and q�(r, 1) = 1. The
function Xaðr; sÞ ¼

PM
i¼1xiðrÞciðsÞ is the external field acting on the polymer at s, where ci(s) is an occupation

function, indicating the linear density of monomer i at index s, and Rga is the radius of gyration of polymer a
in the absence of external fields. Once the propagator equations have been solved, the partition functions may
be computed by averaging over the system volume V for arbitrary s 0.
Qa ¼
1

V

Z
dr0qaðr0; s0Þqyðr0; s0Þ: ð7Þ
Functional differentiation of the free energy with respect to each of the fields /i(r), wi(r), and xi(r) gives the
thermodynamic potentials which drive phase separation in non-equilibrium states
l/
i ðrÞ ¼

dF
d/iðrÞ

¼ kT
v0

XM

j¼1

vij/jðrÞ þ
XW

l¼1

nil/lðrÞ � xiðrÞ
 !

; ð8Þ

lw
i ðrÞ ¼

dF
dwiðrÞ

¼ kT
v0

XM

j¼1

nij/jðrÞ
 !

ð9Þ

lx
i ðrÞ ¼

dF
dxiðrÞ

¼ kT
v0

ha

Qa

Z 1

0

ds qaðr; sÞqyaðr; sÞciðsÞ
� �

� /iðrÞ
� �

: ð10Þ
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The chemical potentials l/
i ðrÞ and lw

i ðrÞ correspond to conserved number density parameters and are typ-
ically slow to relax, as transport over large distances may be required to achieve equilibrium. The chemical
potential fields lx

i , on the other hand, correspond to the non-conserved, local rearrangement of polymer seg-
ments, and as such may be expected to remain close to their equilibrium value, lx(r) = 0. This condition
implicitly defines a set of constraints on xi(r), which may be solved numerically, in an iterative manner.

2.2. Hydrodynamic transport

Simulating the flow of inhomogeneous polymeric fluids in industrial processing flows requires a hydrody-
namic model that tracks multiple viscoelastic fluids and irregular, possibly moving channel walls. Both
requirements may be satisfied simultaneously by combining a generalization of the ‘‘two-fluid model’’ for
polymer blends [15] with flow penalization techniques for irregular boundary surfaces described in [16].
The interested reader will find the details of this derivation in Appendix B. The resulting multiple-fluid model
is composed of a set of modified Navier–Stokes transport equations which relate the forces in the system to the
transport of conserved quantities.

In the absence of chemical reactions, the volume fraction fields are conserved as expressed by the continuity
equations
ot/i þr � /iv
/
i ¼ 0; ð11Þ

otwi þr � wiv
w
i ¼ 0; ð12Þ
where v/
i ðrÞ is the velocity of fluid /i(r) and vw

i ðrÞ is the velocity of the solid material wi(r).
It is convenient to divide the velocity of each fluid into cooperative and relative components, v/

i ¼ vT þ w.
The tube velocity vw

T ¼
PM

i a/
i v/

i þ
PW

j aw
j vw

j represents the cooperative motion of the network of topological
constrains in an entangled polymer melt, as described in Brochard’s theory of mutual diffusion [28], and
the stress division parameters a/ and aw are obtained by balancing the frictional forces acting on the network
as described in [15]. The quantity wi ¼ v/

i � vT represents the velocity of fluid i relative to the network.
The relative velocity of each component may be obtained from the momentum transport equations in the

low Reynold’s number limit,
f/
i ðv

/
i � vTÞ ¼ a/

i r � r� /iðrl/
i þrpÞ þ f/

i ; ð13Þ
fw

i ðv
w
i � vTÞ ¼ aw

i r � r� wiðrlw
i þrpÞ þ fw

i ; ð14Þ
where f/
i is the friction coefficient associated with fluid i and fw

j is the friction coefficient associated with solid
component j. Inertial effects are negligible due to the small size and high viscosity of the system and the fluid
velocities v/ are maintained in a psuedo-steady state such that frictional forces balance the osmotic forces
/irl/

i , pressure gradients $p, viscoelastic stresses $ Æ r and external body forces f/
i . If the velocity field of

the solid objects are specified, then vw
i ðrÞ is known, and Eq. (14) may be solved for fw

i ðrÞ. Integrating this quan-
tity over each rigidly connected region allows us to measure the net force and torque acting on that object.

Summing over the relative transport equations gives the modified Navier–Stokes momentum transport
equation in the low Reynolds number limit,
0 ¼ rpþrp �r � r� f/ � fw; ð15Þ

where we have defined the total osmotic pressure gradient rp ¼

PM
i /irl/

i þ
PW

j wjrlw
j , the net wall force

fwðrÞ ¼
PW

j¼1fw
j ðrÞ and the net body force f/ðrÞ ¼

PM
i¼1f/

i ðrÞ. This equation may be solved simultaneously with
the incompressible continuity equation $ Æ v = 0 to obtain the mean velocity field vðrÞ ¼

P
i/iv

/
i þ

P
jwjv

w
j ,

and pressure field. Once v and wi are known, the tube velocity may obtained from the relationship.
vT ¼
vþ

PM
i¼1ða

/
i � /iÞwi þ

PW
j¼1ða

w
j � wjÞvw

1�
PM

k¼1ða
/
k � /kÞ

: ð16Þ
In the case where the fluids are dynamically matched, the stress division parameters reduce to the volume frac-
tions, and the tube velocity reduces to the mean velocity.
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2.3. Viscoelastic constitutive equations

Polymers are viscoelastic materials which flow like a liquid over long times and behave like elastic solids
when subjected to rapidly changing stresses and strains. Unlike simple Newtonian fluids, the elastic nature
of polymers allows them to store energy, resulting in a time dependent stress–strain relationship which is
described by the material’s constitutive equation. While many constitutive equations are available which
approximate these viscoelastic properties, we have chosen to employ the Oldyrod-B model which allows us
to study a purely viscous fluid (Gi = Ki = 0), a purely viscoelastic melt (gs = 0), or anything in-between. Follow-
ing Tanaka’s example [2], we employ shear moduli of the form Gið/Þ ¼ G0i/

2
i and bulk moduli of the form

Ki(/) = K0ih(/i � fi) where fi is the average volume fraction of component i in the system and h is the step func-
tion. These choices enable us to simulate systems composed of materials with a large dynamic contrast such as a
glassy elastic polymer blends and facilitates comparison with well established Ginzbug–Landau methods [2].

The total viscoelastic force at point r is found by summing the elastic forces contributed by each polymeric
component and a dissipative viscous force as described by
r � rðrÞ ¼
X

i

r � riðrÞ þ gsr2vTðrÞ; ð17Þ
where the shear and bulk stresses stored in component i evolve over time according to the constitutive
equation
ri
O ¼ Gið/ÞjT þ Kið/Þðr � vTÞd� ri=sa: ð18Þ
Each of the derivatives above is an upper convected derivative, ri
O ¼ otrþ vT � rr� r � rvT � ðrvTÞT � r, which

tracks the transport of elastic stresses due to fluid convection while eliminating spurious stresses induced by
purely rotational motion, and the quantity jT ¼ rvT þ ðrvTÞT � 2

dðr � vTÞd is the shear strain-rate tensor.
This constitutive equation is appropriate for polymeric fluids subjected to moderate strain-rate shearing

flows. For simulations with large elastic strains or highly extensional flows, the constitutive equation may be
replaced with a more sophisticated phenomenological model or one based upon the SCFT microphysics [17].

3. Nondimensionalization

We convert the governing equations to a dimensionless form by extracting a characteristic dimensional
scale from each quantity.
r̂ ¼ r=Lc; t̂ ¼ t=tc; v̂ ¼ v=V c; F̂ ¼ F =Ec; r̂ ¼ r=rc: ð19Þ

The characteristic length-scale Lc is set by the radius of gyration of the smallest unperturbed copolymer chain,
Lc ¼ Rg ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffi
N=2d

p
, where b is the statistical segment length, d is the dimension of the system, and N is its

polymerization index. The characteristic time-scale is dictated by the smallest reptative disentanglement time
tc = min(sa), and the characteristic energy is chosen to be the thermal energy, Ec = kT. The characteristic vis-
coelastic stress rc = min(Gi) is set by the smallest polymer shear modulus, and the characteristic convective
velocity is the defined by the ratio Vc = Lc/tc. With these definitions, the propagator and copropagators equa-
tions become
osqa ¼ þka r̂2qa � NXaqa

� �
; ð20Þ

osqya ¼ �ka r̂2qya � NXaqya
h i

; ð21Þ
where $̂ ¼ ð1=LcÞ$ and ka = Na/N, and the dimensionless chemical potentials are
l̂/
i ¼

XM

j¼1

vij/j þ
XW

k¼1

nkiwk � xi; ð22Þ

l̂w
i ¼

XW

j¼1

vw
ij/j: ð23Þ
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The incompressibility condition r̂ � v̂ ¼ 0 and continuity equations are unchanged in dimensionless form
ôt/i ¼ �r̂ � /iv̂
/
i ; ð24Þ

ôtwi ¼ �r̂ � wiv̂
w
i ð25Þ
as are the constitutive equations
r̂i

O

¼ Ĝ0i/
2jT þ K̂0ihð/i � fiÞðr̂ � v̂TÞd� r̂i=ŝa ð26Þ
if we define the dimensionless shear moduli as bG0i ¼ G0i=rc, the dimensionless bulk moduli as bK 0i ¼ K0i=rc,
and the dimensionless relaxation times as ŝa ¼ sa=tc.

Following convention, we scale each term in the momentum balance equation by the characteristic viscous
force fc ¼ gcV c=L2

c , where gc = rctc, which gives
0 ¼ Ca�1r̂p̂þ r̂p̂ � r̂ � r̂� f̂w � f̂/; ð27Þ

where Ca ¼ gcvc

Lclc
is the Capillary number. The equations for the relative velocities and wall forces may be

expressed
Cf̂/
i ŵi ¼ þa/

i r̂ � r̂� /i Ca�1r̂l̂/
i þ r̂p̂

� �
� f̂/

i ; ð28Þ

f̂w
j ¼ �aw

j r̂ � r̂þ wj Ca�1r̂l̂w
j þ r̂p̂

	 

þ Cf̂w

j ðv̂w
j � v̂TÞ; ð29Þ
where C ¼ fcL2
c

gc
is a dimensionless friction factor and fc = min(f0i) is the smallest monomer friction

coefficient. For convenience, we will omit the hats from the dimensionless quantities in the subsequent
discussion.
4. Numerical implementation

The simultaneous solution of the thermodynamic, hydrodynamic, and viscoelastic equations requires a fast
and efficient implementation to keep the problem numerically tractable. We propose a multi-step strategy with
pseudo-spectral spatial discretization and a semi-implicit time discretization which can resolve sharp interfaces
with a minimal number of grid points, and lends itself readily to parallelization using freely distributed fftw-
mpi fast fourier transform routines. The method is composed of the following major steps:

(1) Solve the lx
i ðrÞ ¼ 0 local thermodynamic equilibrium conditions (Eq. (10)) using an iterative fixed point

method and a pseudo-spectral operator splitting scheme to obtain the mean field chemical potentials
l/(r) and lw(r).

(2) Solve the coupled multi-fluid, constitutive equation system using an iterative fixed point method which
employs semi-implicit time discretization, pseudo-spectral spatial derivatives, and the Chorin–Temam
projection method [27,26], to obtain velocity fields v(r) and wi(r) that simultaneously satisfy momentum
balance Eq. (15), the divergence free condition v = 0, as well as no-flow and no-slip boundary conditions
[20].

(3) Use the updated velocities to transport the volume fraction fields /i(r) and wj(r) in a flux conserving
manner.

4.1. Thermodynamic iteration

The chemical potential fields may be obtained by solving the local thermodynamic equilibrium conditions
lx(r) = 0 which implicitly specify the conjugate fields xj(r) as a function of the volume fractions /i(r). These
conditions are highly nonlinear, and are satisfied by an iterative procedure which computes the propagators
and adjusts the conjugate fields to reduce the error.

The propagator diffusion equations are numerically integrated using a well known pseudo-spectral operat-
ing splitting technique [18]
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qaðr; sþ DsÞ ¼ e�XakaDs=2F�1 e�kaDsk2

F e�XakaDs=2qaðr; sÞ
� �h i

; ð30Þ

qyaðr; s� DsÞ ¼ e�XakaDs=2F�1 e�kaDsk2

F e�XakaDs=2qyaðr; sÞ
� �h i

; ð31Þ
where F and F�1 represent forward and inverse Fourier transform operations, and the effective conjugate
potential at index s is Xaðr; sÞ ¼

PM
i xiðrÞciðsÞ. The partition function for each copolymer chain corresponds

to the volume average Qa ¼ 1
V

R
drqaðr; 1Þ and the auxilliary volume fraction fields ~/iðrÞ ¼ ha

Qa

R 1

0 dsqa

ðr; sÞqyaðr; sÞciðsÞ are computed by quadrature over the polymerization index s.
The residual errors eiðrÞ ¼ /iðrÞ � ~/iðrÞ are reduced by employing a hill-climbing technique with line min-

imization as described in [19]. A trial step is taken along the gradient of the energy surface
xH

i ðrÞ ¼ xj
iðrÞ þ �eiðrÞ, where � is some small adjustable parameter, and a second set of errors eH

i ðrÞ is calcu-
lated using the updated values. These two points are fit to a parabola to estimate the step size a ¼ �½ e11

e11�e12
� 1�

which minimizes the error in the current search direction, where e11 ¼ 1
V

R
dreiðrÞeiðrÞ and e12 ¼ 1

V

R
dreiðrÞeH

i ðrÞ.
This value is then used to advance the fields toward a minimal error solution
xjþ1
i ðrÞ ¼ xj

iðrÞ þ ða� �ÞeH

i ðrÞ: ð32Þ

Once the residual error has converged to within some acceptable tolerance, the chemical potential fields may
be calculated using Eqs. (22) and (23).
4.2. Hydrodynamic iteration

The fields r, v, wi, fw and p are all coupled by the hydrodynamic equations of motion and must be obtained
simultaneously using an iterative procedure, which begins by calculating the updated elastic stresses using a
semi-implicit scheme in which the nonlinear terms are treated explicitly.
r�i ¼ rn
i þ G0ið/n

i Þ
2
j

j
T þ K0ihð/n

i � fiÞF�1 ik � ~vj
T

� �
d: ð33Þ
The superscript n counts iteration of the outer, dynamic loop and the superscript j counts the iterations of the
inner, psuedo-equilbrium loop. The linear terms are treated implicitly and the upper convected derivatives are
computed psuedo-spectrally in Fourier space
r
j
i ¼

rH �F�1i ~vT � k~ri � k~vT � ~ri � ~ri � ~vTkð Þ
1þ Dt=sa

ð34Þ
as is the shear stress tensor j
j
T ¼F�1i½k~vT þ ~vTk� � ð2=dÞF�1½ik � ~vj

T�d. The parameter Dt is the time step cho-
sen for the outer loop. The divergence of the total viscoelastic stress is also computed psueodospectrally,
r � rj ¼F�1½ik �

PM
i ~rj

i � k2gs~v
j
T�.

The relative velocity fields are computed using the estimated viscoelastic forces and the pressures produced
in the previous iteration,
w
jþ1
i ¼

a/;n
i r � rj � /n

i Ca�1rl/;n
i þrpj

� �
� fw;n

i

Cfn
i

: ð35Þ
If the walls are externally driven, the motion of each solid object is specified parametrically as a function of
time, and the rigid body motions are converted to a set of wall velocity fields v

w;n
k ðrÞ which are used to calculate

the forces imposed on the fluid by the walls,
fw;j
k ¼ wn

j Ca�1rlw;n
k þrpj

h i
� aw;n

k r � rj þ Cfw;n
k ðv

w;n
k � vj

TÞ: ð36Þ
The momentum balance condition is satisfied by seeking a steady state solution for
vjþ1 ¼ vj þ hðr � rj � Ca�1rpn �rpjþ1 þ fw;j þ f/;jÞ ð37Þ

over the pseudo-time variable h.



688 D.M. Hall et al. / Journal of Computational Physics 224 (2007) 681–698
4.3. Chorin–Temam projection

The pressure and velocity fields are obtained simultaneously using the Chorin–Temam projection method
[27,26]. Gathering the unknown quantities on the left-hand side of the equation gives
vH ¼ vj þ h r � rj � Ca�1rpn þ fw;n þ f/;j
� �

; ð38Þ
where vw = vj+1 + h$pj+1 may be viewed as the Helmholtz decomposition of a single compressible velocity
field.

Taking the divergence of vw and employing the incompressibility condition $ Æ vj+1 = 0 produces a Poisson
equation for the pressure field $2pj+1 = $ Æ vw/h which may be solved in Fourier space.
pjþ1 ¼ �F�1ðik � ~vH=hk2Þ: ð39Þ

The divergence-free portion of the velocity field may then be obtained from
vjþ1 ¼ vH � hrpjþ1: ð40Þ
4.4. Volume fraction transport

The preceding sequence repeats until the residual errors, ev = maxifv � $pi and ep = maxj$ Æ vj, are within
acceptable tolerances. Once the hydrodynamic iteration has converged, the velocities fields for each compo-
nent v/;nþ1

i ¼ vnþ1
T þ w/;nþ1

i are used to transport the volume fraction fields in a flux conserving manner.
/nþ1
i ¼ /n

i þ DtF�1 ik �F /n
i v/;n

i

� �� �
; ð41Þ

wnþ1
k ¼ wn

k þ DtF�1½ik �F½wn
kvw;n

k ��: ð42Þ
4.5. Wall field regularization

Unbounded chemical potentials would be required to produce regions that are completely free of a given
component. Therefore, in a manner analogous to other flow penalization techniques [16], we employ slightly
porous walls that do not occupy the entire volume at a given location. Solid walls with no slip and no flow
boundary conditions are recovered in the limit where the porosity is taken to zero as discussed in [20]. For
the simulations presented in this paper, we employ a porosity of U = 0.01.

Additionally, pseudo-spectral Fourier methods can produce unwanted Gibbs phenomena if the system con-
tains overly sharp interfaces. To prevent this, we apply a Gaussian filter of the form f(r) = exp(�r2/2a) to the
wall fields wj(r) to smooth the transition from solid regions to liquid regions in the channel. The characteristic
width of the gaussian filter, a, employed in our simulations is typically on the order of 0.2Rg, and the filter is
applied by convolving the two functions in Fourier space, wj;smoothed ¼F�1ð~wj

~f Þ. The smallest value of alpha
which may be employed is dictated by the spatial resolution of the simulation, as the wall transitions must be
resolved by several grid-points.
5. Numerical tests and validation

We validate the technique by presenting numerical experiments designed to test the capabilities of each
model component as well as grid refinement studies which demonstrate the accuracy and stability of the
numerical implementation.

5.1. Thermodynamic properties

We validate the thermodynamic components by examining phase separating systems where hydrodynamic
and viscoelastic effects play a minimal role. In particular, we consider the phase separation of diblock copoly-
mer melts in two and three dimensions. This system is of great interest for patterning applications as it exhibits
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geometrically regular repeating structures with nanometer length scales resulting from the competition
between enthalpic and entropic forces. The structure and phase boundaries of these materials have been exam-
ined in great detail using equilibrium SCFT techniques, and while HSCFT is a non-equilibrium formulation, it
should produce the same equilibrium morphologies in the limit of long simulation times.

The equilibrium state exhibited by a particular system is determined by the volume fraction of the compo-
nents fi and the degree of incompatibility vN between them. In Fig. 2, we demonstrate that the HSCFT
method produces the anticipated equilibrium morphologies in three dimensions including lamellae, gyroids,
hexagonally packed cylinders, and close packed spheres. Comparison with the phase boundaries calculated
in [25] confirms that the morphologies obtained are consistent with their coordinates in phase space.

We examine the dynamic evolution of this same system to test the numerical convergence of the technique
under grid-size refinement. Consider a symmetric block copolymer melt where both monomer species occupy
an equal volume fraction, fA = fB = 0.5, and the Flory interaction strength, NvAB = 20, places the system in
the intermediate segregation regime. The melt is initialized to a homogeneous state with small, random fluc-
tuations imposed at all frequencies to break the symmetry. Fig. 3 illustrates the time evolution of this system
after it has been rapidly quenched below its order–disorder transition temperature. Initially, high frequency
modes rapidly decay, and density fluctuations grow exponentially, with the greatest growth occurring for
structures at a critical wave number. The fluctuations saturate, leaving the melt in a highly defect-filled
meso-phase separated state in which the feature size grows over time, until the connectedness of the diblock
copolymers prevents further coarsening. Morphological defects may persist for long times, corresponding to
kinetically trapped states.

We use the same pattern of random variations about the homogeneous state to initialize simulations of
32 · 32, 64 · 64, and 128 · 128 grid-points in a periodic system of fixed dimension, 16 · 16Rg. When we super-
impose the volume fraction contours of all three simulations, we find that the higher resolution simulations
converge to a single solution as the mesh is refined. However, the lowest resolution predicts a distinctly dif-
ferent defect pattern after the fluctuations saturate. We conclude, therefore, that at intermediate segregation
strengths, two gridpoints per Rg is insufficient to fully resolve the mesoscale structures, but four or eight grid
points is adequate.

5.2. Hydrodynamic properties

We validate the hydrodynamic component by simulating low Reynolds number, pressure driven and wall
driven flows in the absence of thermodynamic or viscoelastic effects. Three classic examples of Stokes flow
found in many texts [24] include flow past a fixed sphere, flow induced by a moving sphere, and the flow gen-
erated in a journal bearing due to the motion of two co-rotating eccentric cylinders. The streamlines produced
in the simulation of each case is consistent with the known analytical predictions as illustrated in Fig. 4. The
flow past a fixed sphere (a) exhibits the expected azimuthal symmetry and time reversibility. The streamlines
diverge as they flow past the fixed sphere (a) and converge in the presence of the moving sphere in Fig. 4(b).
Fig. 2. Equilibrium diblock copolymer meso-phases are obtained in the long time limit. (a) Lamellae, fA = 0.5, vN = 18. (b) Gyroid,
fA = 0.37, vN = 18 (QIa�3d space group). (c) Hexagonally packed cylinders, fA = 0.3, vN = 21 (QIm�3m space group). (d) Close packed spheres,
fA = 0.23, vN = 0.20.
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Fig. 3. Convergence of diblock copolymer meso-phase separation under grid refinement. (left): fA = 0.5, vN = 20 at t = 0,1,3,10, and 80.
(right): fA = 0.3, vN = 20 at t = 0,1,4,10 and 120. Snapshots where taken at three resolutions (a) 32 · 32 (red), (b) 64 · 64 (green), (c)
128 · 128 (blue), (d) Superposition of meso-phase boundaries at all three resolutions at t = 4. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

a b c
Fig. 4. Streamlines of wall driven and pressure driven viscous flows at low Reynolds numbers with periodic boundary conditions. (a) Flow
past a fixed sphere, (b) flow induced by a moving sphere, (c) flow reversal in a journal bearing.
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The third case (c) corresponds to the counter clockwise rotation of an infinite cylinder in a fixed cylindrical
cavity, which produces a counter clockwise rotation in the region closest to the rotating cylinder and a
reversed, clockwise flow in the regions furthest from it. This result is also consistent with analytic solutions
of the Stokes equations [24] as well as with experimental observations [23].

We examine the pressure driven flow past a fixed sphere in greater detail to test the behavior of the hydro-
dynamic implementation under grid refinement. The velocity field is generated by an external force, f/ = 0.2
which drives a melt of homopolymer A from top to bottom in the channel. The system also contains a trans-
verse band of incompatible homopolymer B used to track the fluid motion. The Flory incompatibility is set at
NvAB = 8, and the simulation domain is periodic with dimension 10 · 20Rg. The fixed sphere occupies 40% of
the channel width and interacts neutrally with both materials. The viscosity is gs = 1.0, and viscoelastic effects
are suppressed, G0i = K0i = 0.

The interaction of the transverse homopolymer band with the fixed spherical obstacle produces a sequence
of events in which the homopolymer band wraps around the sphere and is stretched until it ruptures, leaving a
layer of B in contact with the obstacle and a drop of homopolymer B which coalesces in the wake of the obsta-
cle, as shown in Fig. 5. We repeat the simulation at grids resolutions of 32 · 64, 48 · 96, and 64 · 128, and
Fig. 5. Convergence of the viscous, low Reynolds number flow of a band of homopolymer B past a circular cylinder in a matrix of
homopolymer A under grid refinement. Snapshots are taken at t = 0,2,4,6,8, and 10 at three resolutions, (a) 32 · 64 (red), (b) 48 · 96
(green), (c) 64 · 128 (blue). (d) Superposition of homopolymer A interface at all three resolutions at t = 6. (e) The same system in three
dimensions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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compare the volume fraction contours produced by each in Figs. 5a–d. The contours of homopolymer A are
superimposed and are found to be nearly identical, indicating that the method converges to a single solution as
the simulation mesh is refined. We also characterize the flow rate by measuring the maximum Weissenberg
number Wi = svmax/L where vmax is the maximum mean field velocity, and L is the width of the narrowest
portion of the channel. In all three cases, we obtain the same value, Wi = 0.32. In Fig. 5e, we analyze this sys-
tem in three dimensions illustrating that the method produces results consistent with the two dimensional
simulations.

5.3. Viscoelastic properties

We validate the viscoelastic components of the model by examining the viscoelastic phase separation of two
component systems. ‘‘Viscoelastic phase separation’’ is the term given to the de-mixing process in two fluid
systems which exhibit a large contrast in their dynamic properties (dynamic asymmetry). In such a system,
phase separation occurs in a manner which differs from the usual spinodal decomposition process. Tanaka
Fig. 6. Viscoelastic phase separation of two homopolymer components: (a) normal AB diblock, fA = 0.5, (b) glassy AB diblock, fA = 0.5,
(c) glassy A + B blend, fA = 0.5, (d) glassy A + B blend, fA = 0.3, (e) glassy AB diblock, fA = 0.3, (f) normal AB diblock, fA = 0.3.
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observed this behavior in polymer solutions [22] and modified the two fluid model to account for them [2]. His
model has subsequently been applied to viscoelastic phase separation of polymer blends and diblock copoly-
mer melts as well [1,21].

In Fig. 6, we illustrate the time dependent behavior of six systems which exhibit phase separation behavior.
Cases (a) and (f) are included for reference, where case (a) illustrates normal phase separation in a critical
diblock copolymer melt, fA = 0.5, and case (f) demonstrates phase separation in an off-critical melt
fA = 0.30. Cases (b)–(d) demonstrate viscoelastic phase separation behavior of systems in which a higher bulk
modulus material KA = 5, f/

A ¼ 2 (white) has been mixed with a softer material KB = 0, f/
B ¼ 1 (black) both of

which have nonzero shear moduli GA = GB = 1. All four systems exhibit the expected characteristic behavior
beginning with an incubation period in which the hard phase forms a viscoelastic network structure, followed
by nucleation of the softer phase, and eventual network break-up. Case (b) is a critical fA = 0.5 glassy/elastic
diblock and case (c) is a critical blend. Case (d) is an off-critical, fA = 0.3, glassy/elastic blend and (e) is an off-
critical diblock melt. As expected, after the breakup of the network, each material resumes its phase separation
processes in which the blends macro-phase separate and the diblocks do not. Cases (d) and (e) demonstrate
‘‘phase inversion’’ wherein the soft material forms drops in a hard matrix in the early stages and their roles
are reversed in the late stages. These results are consistent with previous investigations [1,21].

6. Conclusions

To summarize, we have introduced a method called hydrodynamic self-consistent field theory (HSCFT)
which extends the capabilities of SCFT to the hydrodynamic regime in which bulk material transport and vis-
coelastic effects play a significant role. We introduced a semi-implicit, iterative numerical scheme for the solu-
tion of these equations which makes liberal use of pseudo-spectral fast-Fourier techniques, enabling practical
simulation of sizable systems. We validated the thermodynamic component by reproducing the correct equi-
librium meso-phases found in three dimensional diblock copolymer melts. We validated the hydrodynamic
model by demonstrating that it produces low Reynolds number flows that are consistent with analytic solu-
tions of the Stokes flow equations. The viscoelastic constitutive equations were validated by simulating the
expected viscoelastic phase separation dynamics of glassy/elastic AB diblock copolymer melts and glassy/elas-
tic A + B homopolymer blends. We also performed a series of resolution studies on systems with and without
bulk flow in which we demonstrated that the combined system is stable and converges smoothly to a single
solution under grid-size refinement. We believe that the coupled interaction of this system of equations pro-
vides a powerful and flexible tool for studying the behavior of complex fluids in hydrodynamic flows.

Appendix A. Derivation of the thermodynamic model

In this section, we detail the derivation of a non-equilibrium, self-consistent field theoretic model general
enough to represent an arbitrary blend of C distinct multiblock copolymers with varying molecular weights.
The derivation follows the standard procedure outlined in [13], which consists of the following steps:

(1) Construct a particulate, mesoscale model of the essential physics.
(2) Convert the model to field theoretic form.
(3) Approximate the partition function and obtain the thermodynamic forces.

A.1. Mesoscale model construction

The most general system we are interested in describing consists of C copolymer species and W solid wall
materials, which may be visualized as a dense array of mesoscale particles or ‘‘monomers’’ of equal volume v0.
The forces between the monomers consist of a hard core repulsion, covalent bonds between monomers on the
same polymer, and van der Waals forces between non-bonded monomers.

The hard core potential is modeled implicitly by enforcing the incompressibility of the copolymer melt such
that the total number density remains constant

PM
i¼1q̂i ¼ q0 ¼ 1=v0. The sum runs over all distinguishable
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monomers M and the number density operator for monomer i is q̂iðrÞ ¼
Pna

j¼1

R Na

0
ds½dðr� RajðsÞÞciðsÞ�, where

the quantity na counts the number of copies of copolymer type a and Na is its polymerization index.
Covalent bonds are modeled by treating each group of wall particles as a single rigidly rotating and trans-

lating object and each copolymer as a string of monomers on a parameterized space curve Rai(s) where a 2 C
indicates the copolymer type and i 2 na. Using the standard Gaussian thread approximation, the unperturbed
polymer chains are represented as random walks with a ‘‘stretching’’ free energy given by
U 0 ¼
XC

a¼1

Xna

i¼1

kT

4R2
ga

Z 1

0

ds
dRaiðsÞ

ds

���� ����2; ðA:1Þ
where Rga is the unperturbed radius of gyration of copolymer species a.
Van der Waals interactions between non-bonded particles are represented by the interaction potentials
U// ¼
kT
2v0

Z
dr
XM

i¼1

XM

j¼1

/̂iðrÞvij/̂jðrÞ; ðA:2Þ

U/w ¼
kT
v0

Z
dr
XM

i¼1

XW

j¼1

/̂iðrÞnijŵjðrÞ; ðA:3Þ
where U// is the total energy of monomer–monomer interactions, U/w is the total energy of monomer–wall

interactions, and the volume fraction operator is defined as /̂iðrÞ ¼ q̂iðrÞ=qo. Similarly, ŵjðrÞ represents the
volume fraction operator of solid material j at r. The strength of the effective repulsion between dissimilar
units is given by the Flory parameters v and n.

We complete the mesoscale model by constructing a partition function over all physically realizable config-
urations of the system in the canonical ensemble
Z ¼ Z0

Z Y
a;i;j

D½Rai�D½r�dð/jðrÞ � /̂jðrÞÞ expð�U=kT Þ; ðA:4Þ
where the total energy of a given configuration is U[{Rai}] = U0 + U// + U/w. The ensemble sum runs over all
possible space curves for each copolymer with delta functions which select the configurations that are consis-
tent with the volume fraction fields /i(r).
A.2. Conversion to field theoretic form

The mesoscale model is converted to field theoretic form using a formal procedure which replaces the par-
ticle degrees of freedom with a set of continuous volume fraction and chemical potential fields. Using the delta
functions, the volume fraction operators /̂ðrÞ are replaced with their equivalent field values /(r) in the inter-
action terms
U 1=kT ¼ 1

v0

Z
dr
XM

i¼1

XM

j¼1

1

2
/iðrÞvij/jðrÞ þ

XM

k¼1

XW

l¼1

/kðrÞnklwlðrÞ
" #

ðA:5Þ
and the conjugate chemical fields xi(r) are introduced by employing a Fourier representation for the delta
functions.
Z

D½r�dð/jðrÞ � /̂jðrÞÞ ¼
Z i1

�i1
D½xj� exp

1

v0

Z
drxjðrÞ½/jðrÞ � /̂jðrÞ�

� 
: ðA:6Þ
As each instance of a copolymer of type a is indistinguishable from others of the same species, the part of Z

which depends explicitly on Rai factors into a product of na identical single chain partition functions when we
insert the definition of the volume fraction operators /̂
Qa ¼ Q0

Z
D½R� exp �

Z 1

0

ds N aXaðsÞ þ
1

4R2
ga

dR

ds

���� ����2
 !" #

; ðA:7Þ
where we have defined Xaðr; sÞ ¼
PM

i¼1xiðrÞciðsÞ.
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This integral over all paths may be converted into a volume integral over a propagator in a manner anal-
ogous to that employed by Feynman and Kac [14] in their path integral formulation of quantum mechanics.
When expressed in this form, Qa ¼ 1

V

R
drqaðr; sÞqyaðr; sÞ, and the propagator and co-propagator are evaluated

by numerically solving the differential equations with initial conditions qa(r,0) = 1 and qyaðr; 1Þ ¼ 1.
osqaðr; sÞ ¼ þR2
gar2qaðr; sÞ � N aXaðsÞqaðr; sÞ; ðA:8Þ

osqyaðr; sÞ ¼ �R2
gar2qyaðr; sÞ þ N aXaðsÞqyaðr; sÞ: ðA:9Þ
The partition function Z may now be expressed in the purely field theoretic form Z ¼ Z0

R Q
iD½xi�

expðF ½fx;/g�=kT Þ where the quantity F may be interpreted as the free energy associated with a particular con-
figuration of fields x(r) and /(r) which takes the form
F
kT
¼ 1

v0

Z
dr0

XM

i>j

/ivij/j þ
XM

k

XW

l

/inklwl �
XM

m

/mxm

" #
�
XC

a

na ln Qa: ðA:10Þ
A.3. Mean field approximation

Since we do not know how to evaluate the partition function, it must be numerically sampled or analytically
approximated. As discussed in [13], the chemical potential fields xi are in general complex, which makes direct
numerical sampling difficult and time consuming. Instead, a mean field approximation of the partition func-
tion is obtained by performing a stationary point analysis on the integral for the conjugate fields xi(r). The
resulting solution is purely real and may be obtained from the local thermodynamic equilibrium conditions
(LTE)
dF
dxiðrÞ

¼ kT
v0

½/iðrÞ � ~/iðrÞ� ¼ 0: ðA:11Þ
The quantity ~/iðrÞ ¼ �v0na
d ln Qa
dxiðrÞ is called the auxillary monomer volume fraction, which may be expressed as

an integral over the propagators
~/iðrÞ ¼
ha

Qa

Z 1

0

dsqaðr; sÞqyaðr; sÞciðsÞ; ðA:12Þ
where ha = naNa(v0/V) is the volume fraction occupied by all copolymers of species a in the system.
The LTE conditions represent a set of highly nonlinear equations which specify the mean field conjugate

potentials xi(r) as a function of the volume fraction fields /i(r). The conjugate fields correspond to local con-
figurations of the copolymer chains which relax quickly in comparison with the conserved volume fraction
fields, and as such are be expected to fluctuate close to their mean field values. Once we have solved the
LTE conditions, we may compute the non-equilibrium chemical potentials l/(r) and lw(r) which correspond
to functional derivatives of the free energy with respect to the volume fraction fields.
l/
i ðrÞ ¼

dF
d/iðrÞ

¼ kT
v0

XM

j¼1

vij/jðrÞ þ
XW

l¼1

nil/lðrÞ � xiðrÞ
 !

; ðA:13Þ

lw
i ðrÞ ¼

dF
dwiðrÞ

¼ kT
v0

XM

j¼1

nij/jðrÞ
 !

: ðA:14Þ
Appendix B. Derivation of the multifluid model

In this section, we derive hydrodynamic equations of motion for the transport of multiple viscoelastic fluids
in the presence of rigid channel walls using Rayleigh’s variational principle as discussed in [15]. We briefly
review the method employed to derive a two-fluid model for polymer blends and apply the same procedure
to derive its multi-fluid generalization.
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B.1. Review of Rayleigh’s variational principle

For systems that are not too far out of equilibrium, the theory of irreversible thermodynamics makes the
approximation that the generalized velocities in the system are linearly related to the generalized forces by
dxi
dt ¼ �

P
jLij

oF
oxj

where xi are generalized coordinates, and Lij are Onsager coefficients. For cases where the
inverse of the kinetic Onsager coefficient matrix is defined, this relationship may be re-expressed as
oF
oxi
þ
P

jL
�1
ij

dxj

dt ¼ 0. This equation of motion may be equally well expressed in terms of a variational principle
in the generalized velocities dR = 0 where R ¼

P
i
oF
oxi

_xi þ 1
2

P
i;jL
�1
ij _xi _xj. The two terms in the Rayleigh functional

R ¼ _F þ 1
2
W may interpreted as the total change in free energy _F and an energy dissipation function W.

B.2. Multi-fluid model derivation

The total change in free energy for the system under consideration is
_F ¼
Z

dr
XM

i¼1

dF
d/iðrÞ

_/iðrÞ þ
XW

j¼1

dF
dwjðrÞ

_wjðrÞ
" #

: ðB:1Þ
In the absence of chemical reactions, the number density of each component is a conserved quantity such that
the monomer fields obey _/i ¼ �r � /iv

/
i and the solid fields obey _wj ¼ �r � wjv

w
j . Upon substitution of these

relationships, the total change in free energy may be written in terms of the monomer velocities v/
i and the

rigid wall velocities vw
j as" #
_F ¼
Z

dr �
XM

i¼1

l/
i r � /iv

/
i �

XW

j¼1

lw
jr � wjv

w
j : ðB:2Þ
To construct the dissipation function W, we note that energy is dissipated due to friction between the
monomers and the entangled polymer network f/

i ðv
/
i � vTÞ2, by friction between the solid material and the net-

work fw
j ðv

w
j � vTÞ2, and by elastic deformation of the network r:$vT. Energy is also added to the system by the

motion of the externally driven rigid walls fw
j � v

w
j and by body forces acting on the bulk of the fluid, f/

i � v
/
i .

Therefore, we construct a dissipation function of the form
W
2
¼
Z

dr
XM

i¼1

1

2
f/

i ðv
/
i � vTÞ2 � f/

i � v
/
i

� �
þ
XW

j¼1

1

2
fw

j ðv
w
j � vTÞ2 � fw

j � v
w
j

� �
þ r : rvT

" #
: ðB:3Þ
The velocity field describing the motion of the entangled polymer network is called the tube velocity
vT ¼

P
ia

/
i v/

i þ
P

ja
w
j vj which is a rheological mean velocity where each component is weighted by its stress

division parameter. The tube velocity vT may also be expressed in terms of the mean velocity v and the relative
velocities wi ¼ v/

i � vT using the following relation:
vT ¼
P

iða
/
i � /iÞwi þ

P
jða

w
j � wjÞv

w
i þ v

1�
P

kða
/
k � /kÞ

: ðB:4Þ
Solving a force balance condition on the entangled network
P

if
/
i ðv

/
i � vTÞ þ

P
jf

w
j ðv

w
j � vTÞ ¼ 0 produces

the stress division parameters a/
i ¼ f/

i =f and aw
i ¼ fw

j =f where the sum of the friction coefficients is
f ¼

PM
i f/

i þ
PW

j fw
j .

The friction coefficients take the form f/
i ¼ f/

0iðN a=N eaÞ/i as discussed in [15] where Nea is the entanglement
length of polymer species a. The friction coefficient for flow through a semi-porous wall is given by Darcy’s
law, fw

j ¼ fw
0jwj=U as discussed in [20,16], where the porosity of the material is U ¼

PM
i /i ¼ 1:0�

PW
j wj.

The equations of motion for each component are obtained by appending the divergence free condition to
the Rayleigh functional R ¼ _F þ 1

2
W � pðr � vÞ and then extremizing it with respect to the velocity fields,

dR
dv

/
i

¼ 0 and dR
dv

w
j

¼ 0. The full Rayleigh functional (with implied summation over repeated indices) isZ � 

R ¼ dr �l/

i r � /iv
/
i � lw

jr � wjv
w
j � pðr � vÞ þ r : rvT þ

1

2
f/

i ðv
/
i � vTÞ2 þ

1

2
fw

j ðv
w
j � vTÞ2 � fw

j � v
w
j � f/

i � v
/
i

ðB:5Þ
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which produces the following equations of motion,
0 ¼ /irl/
i þ /irp � a/

i r � rþ f/
i ðv

/
i � vTÞ � f/

i ; ðB:6Þ
0 ¼ wjrlw

j þ wjrp � aw
jr � rþ fw

j ðv
w
j � vTÞ � fw

j : ðB:7Þ
Eq. (B.6) may be solved for the velocity of each fluid relative to the elastic polymer network wi ¼ v/
i � vT, and

Eq. (B.7) gives the local forces fw
j ðrÞ that the walls impart upon the fluid when moving at a velocity vw

j ðrÞ.
w/
i ¼

1

f/
i

a/
i r � r� /irl/

i � /irp þ f/
i

� �
; ðB:8Þ

fw
j ¼ wjrlw

j þ wjrp � aw
jr � rþ fw

j ðv
w
j � vTÞ: ðB:9Þ
Summing Eqs. (B.6) and (B.7) over all components gives the momentum balance condition
0 ¼ rpþrp �r � r� fw � f/ ðB:10Þ

in the limit of zero Reynolds number, which together with the divergence free condition implicitly specifies v

and p. The total osmotic pressure is defined as rp ¼
PM

i /irl/
i þ

PW
j wjrlw

j . The net external force exerted
by the walls is fw ¼

PW
j fw

j and the total body force acting on the fluid is f/ ¼
PM

i f/
i .
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